Journal of Organometallic Chemistry, 359 (1989) 179-188 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Untersuchungen zur Reaktivität von Cyclopentadienylchromsulfiden gegenüber Luftsauerstoff und Elektrophilen und Röntgenstrukturanalyse von $Cp_{2}^{*}Cr_{2}(\mu,\eta^{2}-S_{2})(\mu-S_{2})$ ($Cp^{*} = \eta^{5}-C_{5}Me_{5}$)

Henri Brunner, Joachim Pfauntsch, Joachim Wachter *,

Institut für Anorganische Chemie der Universität Regensburg, Universitätsstraße 31, D-8400 Regensburg (B.R.D.)

Bernd Nuber und Manfred L. Ziegler

Anorganisch-chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg (B.R.D.)

(Eingegangen den 25. Mai 1988)

Abstract

The sulfur-rich complex $Cp_2^*Cr_2(\mu, \eta^1-S,S)(\mu, \eta^2-S_2)(\mu-S)$ (I) reacts with PPh₃, under abstraction of the uncoordinated sulfur, to give $Cp_2^*Cr_2(\mu, \eta^2-S_2)(\mu-S)_2$ (II) thus confirming the existence of a labile sulfur in I. An X-ray diffraction study of II has shown this process to proceed without rearrangement of the original framework. This means that both the S²⁻ and the S₂²⁻ ligand lie in a plane perpendicular to the M-M plane bisecting it. The S atoms form a trapezoid in contrast to the arrangement found in $Cp_2^*Cr_2S_5$, which seems to be influenced by the μ, η^1 -S,S ligand. Air oxidation of I gives the SO₃-adducts $Cp_2^*Cr_2S_4 \cdot SO_3$ (IV) and $Cp_2^*Cr_2S_5 \cdot SO_3$ (V). II gives these complexes IV and V only in trace amounts, but the oxidation of a weakly bound sulfur atom enhances this reaction. The SO₃ thus formed adds to nucleophilic sulfur bridges to give the products in good yields. This is independently confirmed by the formation of I by Br₂ or I₂ is accompanied by the loss of one sulfur to yield compounds with the formulation $Cp_2^*Cr_2S_4X_2$ (X = Br, I). $Cp_2^*Cr_2S_4I_2$ can be reduced with Li₂S₂ under sulfide transfer to give I.

Zusammenfassung

Der schwefelreiche Komplex $Cp_2^{*}Cr_2(\mu, \eta^1-S, S)(\mu, \eta^2-S_2)(\mu-S)$ (I) reagiert mit PPh₃ unter Abstraktion des nicht metallkoordinierten Schwefels zu $Cp_2^{*}Cr_2(\mu, \eta^2-S_2)(\mu-S)_2$ (II) was die Präsenz eines labilen Schwefels in I beweist. Wie eine Röntgenstrukturanalyse von II zeigt, verläuft dieser Prozeß ohne Gerüstumlagerung, d.h. die beiden S²⁻-Liganden und der S₂²⁻-Ligand liegen in einer Ebene senkrecht zum M-M-Vektor und halbieren diesen. Die S-Atome bilden ein Trapez, im Gegensatz zu der in Cp^{*}₂Cr₂S₅ gefundenen Anordnung, die durch den μ, η^1 -S,S-Liganden beeinflußt zu sein scheint. Bei der Luftoxidation von I entstehen die SO₃-Addukte Cp^{*}₂Cr₂S₄ · SO₃ (IV) und Cp^{*}₂Cr₂S₅ · SO₃ (V). Da II diese Komplexe nur in Spuren zu bilden vermag, scheint für diese Reaktion die Oxidation eines schwach gebundenen Schwefelatoms erforderlich. Hierdurch gebildetes SO₃ wird dann in sehr guten Ausbeuten an nukleophile Schwefelbrücken addiert. Dies kann unabhängig hiervon durch die Bildung von IV und V in der Reaktion von I bzw. II mit SO₃ · Pyridin bewiesen werden. Die Oxidation von I mittels Br₂ bzw. I₂ führt unter Schwefelverlust zu Verbindungen der Zusammensetzung Cp^{*}₂Cr₂S₄X₂ (X = Br, I). Cp^{*}₂Cr₂S₄I₂ läßt sich mit Li₂S₂ unter Sulfidübertragung zu I reduzieren.

Einleitung

Die Reaktivität von metallorganischen Chalkogenidkomplexen mit beliebig substituierten Cyclopentadienylliganden wird in erster Linie durch elektronenreiche Schwefelliganden bestimmt [1–4]. Deren Nukleophilie ist jedoch entsprechend ihrer Bindungsart abgestuft. So ist z.B. der schwefelreiche Komplex $Cp^*_2Cr_2S_5$ (I) ($Cp^* = \eta^5$ - C_5Me_5) durch drei unterschiedliche, die beiden Cr-Atome verbrückende Schwefelliganden charakterisiert: Neben einem μ -S- und einem μ, η^2 -S₂-Liganden liegt noch ein außergewöhnlich koordinierter μ, η^1 -S,S-Ligand vor [5]. Letzterer enthält einen schwach gebundenen Schwefel, der sich durch PPh₃ unter Bildung von $Cp^*_2Cr_2S_4$ (II) entfernen läßt [2]. Bisher wurde für II eine zu I nahe verwandte Struktur angenommen. Da jedoch für derartige Schwefelabstraktionen Gerüstumlagerungen nicht prinzipiell auszuschließen sind [3] und mittlerweilen sogar die Existenz eines weiteren Isomeren in Form von $(C_5H_5)_2Cr_2(\mu,\eta^1-S_2)(\mu-S)_2$ (III) (Schema 1) gesichert worden ist [6], wird in der vorliegenden Arbeit zunächst die definitive Molekülstruktur von II beschrieben.

Auf dieser Basis wird dann über die Aktivierung des "labilen" Schwefels in $Cp_2^*Cr_2S_5$ durch Luftsauerstoff berichtet, wobei sich letztendlich SO₃ an die verbliebenen nukleophilen Schwefelbrücken addiert. Mit der Reaktion von SO₃ pyr (pyr = Pyridin) und $Cp_2^*Cr_2S_5$ bzw. $Cp_2^*Cr_2S_4$ wird eine Methode zur Addition von SO₃ an Schwefelbrücken beschrieben. Auch wird die Reaktion dieser Komplexe mit weiteren Elektrophilen wie Br₂ und I₂ untersucht.

Schema 1

Röntgenstrukturanalyse von Cp^{*}₂Cr₂S₄ (II)

Einkristalle von II [2] wurden aus Toluol/Pentan (1/1) erhalten. Die Ergebnisse der Röntgenstrukturanalyse, d.h. die Atomparameter sowie wesentliche Bindungslängen und -winkel sind in den Tabellen 1 und 2 zusammengefaßt. Wie der ORTEP-Zeichnung (Fig. 1) zu entnehmen ist, ist II tripeldeckerartig aufgebaut, d.h. parallel zu den peripheren C₅Me₅-Liganden befinden sich in einer Ebene eine Dischwefel- und zwei Monoschwefelbrücken. II besitzt die gleiche Struktur wie $Cp^{\star}_{2}Mo_{2}(\mu, \eta^{2}-S_{2})(\mu-S)_{2}$ [7] und praktisch dasselbe Grundgerüst wie $Cp^{\star}_{2}Cr_{2}S_{5}$ [5]. Weitgehend ähnliche Bindungsparameter liegen für die Cr-Cr- (2.464(1) Å in II und 2.289(2) Å in I) und S-S-Abstände (2.113(3) Å in II und 2.149(5) Å in I) vor. Damit stehen vergleichsweise langen S-S-Bindungen [8] relativ kurze Cr-Cr-Abstände gegenüber. Dieser Befund legt neben einer S \rightarrow Cr- σ -Donorfunktion eine Rückbindung aus besetzten Metall-*d*-Orbitalen in antibindende π^{\star} -Orbitale der Schwefelliganden nahe. Folgerichtig sind auch die Cr-S-Bindungslängen (2.267(1)-2.319(2) Å) verkürzt [9]. Um 0.07 – 0.12 Å kürzere Cr-S-Abstände finden sich in (C₅H₅)₂Cr₂(μ, η^{1} -S₂)(μ -S)₂ (III) [6]. Dieser Komplex läßt sich formal aus II ableiten

Fig. 1. Molekülstruktur von Cp*₂Cr₂S₄ (II) (ORTEP-Zeichnung).

Fig. 2. Die Ebenen der Schwefelliganden von $Cp_2^*Cr_2S_5$ (a) und $Cp_2^*Cr_2S_4$ (b) im Vergleich (die Abstände sind in Å angegeben).

Atom	x/a	y/b	z/c	U _{equiv} ^a
Cr(1)	3265(1)	615(1)	2465(1)	28(1)
Cr(2)	7226(1)	1655(1)	7319(1)	27(1)
S(1)	5149(2)	-1353(1)	1857(1)	44(1)
S(2)	3987(2)	-662(2)	3793(1)	54(1)
S(3)	1377(2)	-101(2)	1670(1)	48(1)
S(4)	1352(2)	-207(2)	3660(1)	59(1)
C(1)	3362(7)	2586(5)	3094(4)	38(2)
C(2)	2139(7)	2880(5)	2409(4)	37(2)
C(3)	3032(7)	2403(5)	1503(4)	38(2)
C(4)	4781(7)	1827(5)	1622(4)	38(2)
C(5)	5011(7)	1926(5)	2595(4)	36(2)
C(6)	3022(9)	2953(6)	4124(4)	55(3)
C(7)	277(7)	3600(6)	2605(5)	55(3)
C(8)	2247(9)	2584(7)	585(4)	58(3)
C(9)	6208(8)	1309(7)	860(5)	61(3)
C(10)	6649(7)	1486(6)	3028(5)	56(3)
C(11)	2307(7)	- 3263(5)	3640(4)	33(2)
C(12)	929(7)	-2881(5)	3071(4)	38(2)
C(13)	1599(8)	- 3212(6)	2112(4)	46(3)
C(14)	3407(8)	- 3807(5)	2096(4)	47(2)
C(15)	3850(7)	- 3833(5)	3048(4)	35(2)
C(16)	2136(9)	- 3142(6)	4698(4)	52(3)
C(17)	-911(7)	-2306(7)	3423(6)	65(3)
C(18)	570(10)	- 3051(7)	1279(5)	79(4)
C(19)	463(1)	- 4389(7)	1260(5)	80(4)
C(20)	5598(7)	- 4405(6)	3345(6)	63(3)

Atomkoordinaten (×10) und thermische Paran	heter $(U_{equiv} \times 10^3)$) von $Cp^*_2Cr_2S_4$	(II)
----------------------	------------------------	---------------------------------	-----------------------	------

^{*a*} $U_{\text{equiv}} = 1/3$ Spur \tilde{U} .

durch eine Rotation des η^2 -S₂-Liganden um 90°. Dabei ändert sich zwar nicht die Ladungsverteilung im Komplex, die veränderte sterische und eventuell auch elektronische Situation (die η^1 -Brücke trägt vier Elektronen weniger zur Gesamtelektronenbilanz bei als die η^2 -Brücke) bewirkt jedoch eine Aufweitung der Cr-Cr-Bindung auf 2.807(1) Å. Ein ähnlicher Effekt wird in dem Redoxsystem Cp^{*}₂Fe₂S₄ \Rightarrow Cp^{*}₂Fe₂S₄²⁺ + 2 e⁻ beobachtet, das eine reversible η^1 -S₂ $\leftrightarrow \eta^2$ -S₂-Umlagerung beinhaltet [10].

Der einzige augenfällige Unterschied in den Strukturen von I und II betrifft die nichtbindenden Abstände in der Ebene der Schwefelliganden (Fig. 2). Während in II ein gleichschenkliges Trapez vorliegt, bewirkt der η^1 -S,S-Ligand in I eine signifikante Verzerrung desselben. Eine weitere Gemeinsamkeit beider Cr-Komplexe sind S-S-Abstände um 2.8 Å. Ob diese wirklich schwach bindenden Wechselwirkungen entsprechen (als Schulbeispiele hierfür gelten S₈²⁺ [11] und [(MeCp)Ru(PPh₃)]₂S₆ [12]) muß offen bleiben. Ein Vergleich mit Cp^{*}₂Mo₂(μ , η^2 -S₂)(μ -S)₂ (alle $d_{S...S} \ge 3.04$ Å) legt nahe, daß eher sterische Gegebenheiten diese relativ kurzen Abstände zu erzwingen scheinen.

Die Luftoxidation der Komplexe I und II

Rührt man eine Lösung der Komplexe I bzw. II in Toluol an Luft, so lassen sich nach chromatographischer Aufarbeitung zwei Verbindungen, IV und V, isolieren,

Tabelle 1

Cr(1)-Cr(2)	2.464(1)	S(1)-Cr(1)-S(2)	76.8(1)	
Cr(1)-S(1)	2.267(1)	S(1)-Cr(1)-S(3)	83.6(1)	
Cr(1) - S(2)	2.316(2)	S(2)-Cr(1)-S(4)	54.3(1)	
Cr(1)S(3)	2.269(2)	Cr(1)-S(1)-Cr(2)	65.8(1)	
Cr(1) - S(4)	2.319(2)	Cr(1)-S(2)-Cr(2)	64.3(1)	
Cr(1) - C(1)	2.219(6)	Cr(1)-S(2)-S(4)	63.0(1)	
Cr(1) - C(2)	2.230(5)			
Cr(1) - C(3)	2.246(5)			
Cr(1) - C(4)	2.250(6)			
Cr(1) - C(5)	2.229(6)			
S(2)-S(4)	2.113(3)			
$S(1) \cdots S(2)$	2.848			
$S(1) \cdots S(3)$	3.025			
$S(3) \cdots S(4)$	2.843			

Ausgewählte Bindungslängen (Å) und -winkel (°) für $Cp^*_2Cr_2S_4(II)$

Tabelle 2

die aufgrund ihrer IR-Spektren Absorptionen im $\nu(SO)$ -Bereich (Tab. 3) enthalten. Durch Vergleich mit den aus I und II durch Umsetzung mit SO₃ · pyr erhaltenen Komplexen (Schema 2) lassen sich IV und V als die SO₃-Addukte Cp^{*}₂Cr₂S₄ · SO₃ bzw. Cp^{*}₂Cr₂S₅ · SO₃ formulieren. Der zu IV analoge Mo-Komplex, Cp^{*}₂Mo₂S₄ · SO₃, konnte strukturell gesichert werden, er enthält eine an eine S²⁻-Brücke addierte SO₃-Gruppe [13]. Der ungewöhnlich lange S–S-Abstand von 2.168(2) Å innerhalb dieses S₂O₃²⁻-Liganden sowie chemische Experimente sprechen tatsächlich eher für ein SO₃-Addukt an eine Sulfidbrücke als für einen thiosulfatverbrückten Komplex (d_{S-S} 2.102(2) Å [14]).

Als wesentliche Voraussetzung für die Bildung von $Cp_2^*Mo_2S_4 \cdot SO_3$ wurde die Isomerisierung seiner Vorstufe unter Öffnung der Schwefelbrücken angesehen [13]. Komplex II ist dagegen zu derartigen Isomerisierungen nicht fähig, entsprechend niedrig liegt deshalb die Gesamtausbeute an IV und V (<1%). Die wesentlich höheren Ausbeuten (19% an IV und 16% an V) ausgehend von I sind somit auf

Schema 2. Zusammenfassende Darstellung der Reaktionen von $Cp^*_2Cr_2S_5$ und $Cp^*_2Cr_2S_4$ ($Cp^* - \eta^5 - C_5Me_5$; pyr = Pyridin; X = Br: a, X = I: b).

dessen leicht abspaltbaren Schwefel zurückzuführen. Das hieraus durch Oxidation gebildete SO₁ addiert sich praktisch gleichermaßen an noch nicht umgesetztes I bzw. an neugebildetes II.

Mechanistisch gesehen, läßt sich somit die Reaktion von I mit Luftsauerstoff in mehrere Einzelschritte zerlegen. Sie wird initiiert durch Bildung von SO₂ aus leicht aktivierbarem Schwefel. Als Lewissäure ist SO2 zur Addition an nukleophile Schwefelbrücken fähig, entsprechende stabile Komplexe wurden bereits strukturell charakterisiert [15]. Die Oxidation von SO₂ zu SO₃ kann man sowohl am Komplex als auch in Lösung annehmen. Nach Untersuchungen von G.J. Kubas kommt dabei SO₂ die Schlüsselrolle als Sauerstoffüberträger zu, während O₂ und H₂O als mögliche O-Donoren ausscheiden [16]. In Lösung befindliches SO3 stellt als sehr starkes Elektrophil einen ausgezeichneten Koordinationspartner für Schwefelliganden dar, wie im folgenden Abschnitt gezeigt wird.

Addition von SO₃ an Cp^{*}₂Cr₂S_n (n = 4, 5)

Rührt man die CH₃CN-Lösungen von I bzw. II mit dem SO₃-Übertragungsreagens SO₃ · pyr, so bildet sich jeweils nur ein SO₃-Addukt, nämlich $Cp^{*}_{2}Cr_{2}S_{4} \cdot SO_{3}$ (IV), (aus II) und $Cp_2Cr_2S_5 \cdot SO_3$ (V) (aus I) in 62 bzw. 82% Ausbeute. Die Einführung eines weiteren SO₂-Moleküls in diese Komplexe konnte nicht beobachtet werden. Elementaranalysen belegen die Zusammensetzung der Produkte, während die FD-Massenspektren als dominierendes Radikalkation jeweils die SO3freie Spezies enthalten. Dies ist ein weiteres Indiz für die thermische Empfindlichkeit von $Cp_{2}^{\star}M_{2}S_{n} \cdot SO_{3}$ -Addukten, nachdem selbst der röntgenstrukturanalytisch charakterisierte Komplex Cp^{*}₂Mo₂S₄·SO₃ lediglich das Molekülion von Cp^{*}₂Mo₂S₄ liefert [13]. IR-spektroskopisch lassen sich für IV und V jeweils zwei sehr starke Absorptionsbanden zwischen 1250 und 1200 cm⁻¹ sowie zwei weitere einzelne, ebenfalls sehr starke Banden um 1000 und 600 cm⁻¹ (Tab. 3) feststellen. die für eine tetraedrische, einzähnige LSO₃-Struktureinheit (L = S [13], L = O [17]) charakteristisch ist.

Die ¹H-NMR-Spektren enthalten für IV und V jeweils ein Resonanzsignal für die C₅Me₅-Liganden (Tab. 3), was nicht nur den symmetrischen Aufbau der Verbin-

Spektroskopis	sche Daten der Komplexe IV – VII		
IR (KBr, cm ⁻	-1)		
	ν(SO)	v(PF)	
IV	1229s, 1207vs, 1010vs, 600 vs		
v	1249vs, 1235sh, 1021vs, 595vs		
VII		841vs, 553s	
¹ H-NMR (CI	OCl ₃ -Lösung, i-TMS)		
	$\delta(^{1}H)$		
	(CH ₃ -Gruppe)		
IV	2.24		
V	2.24		
VIa	2.36 ^a		
A Carette Desile	$= Wh(250, CD, C1, L^{2}) = 90^{\circ}C$		

Tabelle 3

^a Gerät Bruker WM-250; CD₂Cl₂-Lösung, – 80 °C.

dungen beweist. Vielmehr läßt sich hieraus auch eine regiospezifische Addition der SO₁-Gruppe an die Substrate ableiten. D.h., daß unter Berücksichtigung der abgestuften Nukleophilie der Schwefelbrücken [2] in IV lediglich ein Thiosulfat-Ligand und in V ein Disulfansulfonat-Ligand (S2SO3²⁻) gebildet wird, während die restlichen Brückenliganden nicht angegriffen werden. Auch von dem zu II strukturanalogen $Cp^*_2Mo_2S_4$ ausgehend wird nur ein Produkt gebildet (Ausbeute 49%) [18], das in seinen spektroskopischen Eigenschaften völlig mit denjenigen des strukturell gesicherten $Cp^*, Mo_2S_4 \cdot SO_3$ übereinstimmt [13]. In letzterem Komplex ist die am sp^3 -hybridisierten μ -Schwefel fixierte SO₃-Gruppe dem η^2 -S₂-Liganden zugewandt, während sich die zweite mögliche Orientierung in Richtung Monosulfidbrücke in den ¹H-NMR-Spektren nicht bemerkbar macht. Eine Inversion der $S_2O_3^{2-}$ -bzw. $S_3O_3^{2-}$ -Liganden an ihrem Brückenschwefel ist auszuschließen, da z.B. im Tieftemperaturspektrum von V die CH₃-Resonanz bei 1.93 ppm (CD₂Cl₂-Lösung) bis 183 K als scharfes Singulett erhalten bleibt. Auch dimere thiolatverbrückte Komplexe weisen generall hohe Inversionsbarrieren auf, vorausgesetzt sie enthalten eine M-M-Bindung [19].

Oxidation von Cp^{*}₂Cr₂S₅ mittels Br₂ und I₂

Rührt man die Toluollösung von I mit der äquivalenten Menge Brom oder Iod, so bilden sich die braunen, in Toluol schwerlöslichen Verbindungen $Cp_{2}^{*}Cr_{2}S_{4}X_{2}$ (VI) (Schema 1). Der Verlust eines S-Atoms im Verlauf der Reaktion wird durch Elementaranalysen bestätigt. Da VIb in polaren Solventien nur sehr schwer löslich ist, läßt sich lediglich VIa in ein PF₆-Salz der Zusammensetzung $Cp_{2}^{*}Cr_{2}S_{4}BrPF_{6}$ (VII) überführen. VIa,b und VII gemeinsam ist, daß ihre FD-Massenspektren als dominierendes Ion jeweils die Spezies $Cp_{2}^{*}Cr_{2}S_{4}X^{+}$ enthalten, begleitet von dem halogenfreien Radikalkation $Cp_{2}^{*}Cr_{2}S_{4}^{++}$.

Da in keinem Fall geeignete Einkristalle für eine Röntgenstrukturanalyse erhalten werden konnten und auch IR- und ¹H-NMR-Spektren wenig hilfreich sind, stützt sich die Strukturdiskussion der Komplexe VIa,b und VII lediglich auf die Massenspektren und die Tatsache, daß durch Umfällung von VIa selbst mit einem Überschuß an NH_4PF_6 nur ein Br⁻-Ion durch PF_6^- substituierbar ist. Diese Beobachtung ist insofern bedeutsam, als der dikationisch aufgebaute Komplex $[Cp_2^*Fe_2S_4]Br_2$ in analoger Reaktion in guten Ausbeuten zu $[Cp_2^*Fe_2S_4][PF_6]_2$ abreagiert [10]. Daher scheint für VIa,b und VII der in Schema 1 abgebildete Strukturvorschlag sehr wahrscheinlich, obwohl Chalkogen-Halogen-Liganden bisher äußerst selten sind [20].

Bemerkenswerterweise läßt sich VIb (nicht jedoch VIa) mit Li₂S₂ zu I reduzieren, d.h. eine Monosulfidbrücke wird in einen μ, η^1 -S,S-Liganden umgewandelt. Die Bildung einer S₄²⁻-Brücke [8,21] gelingt auf diese Weise jedoch nicht.

Experimenteller Teil

Alle Arbeiten wurden, soweit nicht anders erwähnt, unter Luftausschluß und unter Verwendung von trockenen, N_2 -gesättigten Lösungsmitteln durchgeführt. Die Elementaranalysen finden sich mit den Ausbeuten und weiteren Eigenschaften in Tab. 4 zusammengefaßt.

Die Komplexe I und II wurden nach bereits beschriebenen Verfahren hergestellt [2,5].

Summenformel	Farbe	Ausbeute	Analysen (Gef. (ber.) (%))		
		(%)	C	Н	S
C ₂₀ H ₃₀ Cr ₂ O ₃ S ₅	grün	62	40.76	5.21	27.25
(IV)			(41.22)	(5.19)	(27.51)
$C_{20}H_{30}Cr_2O_3S_6$	grün	82	38.85	4.87	30.94
(V)			(39.07)	(4.92)	(31.29)
$C_{20}H_{30}Cr_2Br_2S_4$	braun	78	36.24	4.57	
(VIa)			(36.26)	(4.56)	
$C_{20}H_{30}Cr_2I_2S_4$	braun	82	31.58	3.96	16.69
(VIb)			(31.75)	(4.00)	(16.95)
$C_{20}H_{30}Cr_2BrF_6PS_4$	rotbraun	36	32.95	4.10	17.70
(VII)			(33.02)	(4.16)	(17.63)

Ausbeuten, Farben und Analysenwerte der Komplexe IV-VII^a

^a Die Problematik der Molgewichtsbestimmung wird im Text diskutiert.

Darstellung der SO₃-Addukte IV und V

(a) Reaktion von I und II mit $SO_3 \cdot pyr$ [22]. Zur Lösung von 45.9 mg (0.29 mmol) $SO_3 \cdot pyr$ (pyr = Pyridin) in 20 ml CH₃CN wird unter Rühren innerhalb von 5 min eine Suspension von 155 mg (0.29 mmol) I in 60 ml CH₃CN zugetropft. Nachdem 16 h bei Raumtemperatur weitergerührt wurde, zieht man das Lösungsmittel ab, nimmt den Rückstand in 30 ml Toluol/Aceton (2/1) auf und chromatographiert an SiO₂ mit dem gleichen Lösungsmittelgemisch als Eluens. Man isoliert nacheinander eine dunkelgrüne (Cp^{*}₂Cr₂S₅, 3% Ausbeute), hellgrüne (Cp^{*}₂Cr₂S₄SO₃ (IV) 5%) sowie wiederum hellgrüne Zone (Cp^{*}₂Cr₂S₅SO₃ (V) 82%).

Die Darstellung von $Cp^*_2Cr_2S_4$ SO₃ (IV) folgt obiger Arbeitsvorschrift. Nach der chromatographischen Reinigung erhält man in der Reihenfolge der isolierten Zonen die Komplexe II (12% Ausbeute), IV (62%) und V (2%). IV und V sind aus CH_2Cl_2/Et_2O (2/1) umkristallisierbar.

(b) Luftoxidation von $Cp^*_2Cr_2S_5$ (1). Eine Lösung von 320 mg (0.60 mmol) I in 100 ml Toluol wird 18 h bei 45°C an Luft gerührt. Die chromatographische Reinigung erfolgt wie unter (a) beschrieben und liefert grüne Produkte, die in ihren spektroskopischen Eigenschaften identisch mit den in (a) dargestellten Komplexen IV und V sind.

Darstellung von VIa,b

215 mg (0.4 mmol) I werden in 50 ml Toluol gelöst und mit der äquimolaren Menge Br_2 bzw. I_2 versetzt. Der nach 1–2 h Rühren bei Raumtemperatur gebildete braune Niederschlag wird abfiltriert, mit 10 ml Et₂O gewaschen und vakuumgetrocknet. Nach Umkristallisieren aus $CH_2Cl_2/Et_2O(10/1)$ (VIa) bzw. CH_2Cl_2 (VIb) erhält man analysenreine, dunkelbraune Kristalle.

Darstellung von VII

Eine Mischung aus 116 mg (0.18 mmol) $Cp_2^*Cr_2S_4Br_2$, 25 ml MeOH, 30 ml H₂O und 57.1 mg (0.36 mmol) NH₄PF₆ wird 1.5 h bei Raumtemperatur gerührt. Der gebildete rotbraune Niederschlag enthält VII in 36% Ausbeute (bezogen auf $Cp_2^*Cr_2S_5$). Das Produkt wird abfiltriert, mit 10 ml Et₂O gewaschen, vakuumgetrocknet und aus CH₂Cl₂ umkristallisiert.

Tabelle 4

Reaktion von $Cp^{\star}_{2}Cr_{2}S_{4}I_{2}$ (VIb) mit $Li_{2}S_{2}$

Eine Lösung von 347 mg (0.46 mmol) VIb in CH_2Cl_2 wird mit 0.92 ml einer 0.5 *M* Li₂S₂-Lösung in THF [23] umgesetzt. Nach 2 h Rühren bei Raumtemperatur entfernt man das Lösungsmittel, nimmt den Rückstand in 40 ml Toluol auf, filtriert und chromatographiert an SiO₂ mit Toluol/Et₂O (10/1). Dabei läßt sich eine braungrüne Zone eluieren, die aufgrund spektroskopischer Vergleichsdaten $Cp^*_2Cr_2S_5$ enthält (Ausbeute 22%).

Röntgenographische Daten von $Cp^{\star}_{2}Cr_{2}S_{4}$ (II)

Kristallgröße: $0.23 \times 0.28 \times 0.7$ mm; Habitus: säulig; d(röntg.) 1.48 Mg m⁻³; F(000) 524; triklines Kristallsystem: Raumgruppe $P\overline{1}(2)$; Gitterkonstanten: a 8.179(7), b 10.158(8), c 14.21(1) Å; α 89.90(7), β 84.66(7), γ 73.67(7)°; V 1127.7 Å³, Z = 2; linearer Absorptionskoeffizient: μ 13.01 cm⁻¹; 3718 vermessene Reflexe, davon 3690 voneinander unabhängige Reflexe mit $I \ge 2.5\sigma(I)$ (Syntex P3-Vierkreisdiffraktometer; Mo- K_{α} -Strahlung λ 0.71069 Å; Meßbereich $3 < 2\theta < 60^{\circ}$); Patterson- und Fourier-Methoden, Verfeinerung bis R(anisotrop) = 0.054; $R_w =$ 0.051.

Literatur

- M. Rakowski DuBois, R.C. Haltiwanger, D.J. Miller und G. Glatzmeier, J. Am. Chem. Soc., 101 (1979) 5245; C.M. Bolinger, T.B. Rauchfuss und A.L. Rheingold, Organometallics, 1 (1982) 1551; D.A. Rajan, M. McKenna, J. Noordik, R.C. Haltiwanger und M. Rakowski DuBois, Organometallics, 3 (1984) 831; R. Weberg, R.C. Haltiwanger und M. Rakowski DuBois, Organometallics, 4 (1985) 1315; T.B. Rauchfuss, D.P.S. Rodgers und S.R. Wilson, J. Am. Chem. Soc., 108 (1986) 3114; A.C. Lizano und M.E. Noble, Inorg. Chem., 27 (1988) 749.
- 2 H. Brunner, H. Kauermann, W. Meier und J. Wachter, J. Organomet. Chem., 263 (1984) 183.
- 3 C.M. Bolinger, T.B. Rauchfuss und A.L. Rheingold, J. Am. Chem. Soc., 105 (1983) 6321.
- 4 H. Brunner, W. Meier, J. Wachter, P. Weber, M.L. Ziegler, J.H. Enemark und C.G. Young, J. Organomet. Chem., 309 (1986) 313.
- 5 H. Brunner, J. Wachter, E. Guggolz und M.L. Ziegler, J. Am. Chem. Soc., 104 (1982) 1765.
- 6 L.Y. Goh und T.C.W. Mak, J. Chem. Soc., Chem. Commun., (1986) 1474.
- 7 H. Brunner, W. Meier, J. Wachter, E. Guggolz, T. Zahn und M.L. Ziegler, Organometallics, 1 (1982) 1107.
- 8 A. Müller und E. Diemann, Adv. Inorg. Chem., 31 (1987) 89.
- 9 E. Guggolz, Dissertation Universität Heidelberg, 1984.
- 10 H. Brunner, A. Merz, J. Pfauntsch, O. Serhadli, J. Wachter und M.L. Ziegler, Inorg. Chem., 27 (1988) 2055.
- 11 C.G. Davies, R.J. Gillespie, J.J. Park und J. Passmore, Inorg. Chem., 10 (1971) 2781.
- 12 J. Amarasekera, T.B. Rauchfuss und A.L. Rheingold, Inorg. Chem., 26 (1987) 2017.
- 13 H. Brunner, U. Klement, J. Pfauntsch und J. Wachter, Angew. Chem., 99 (1987) 268; Angew. Chem. Int. Ed. Engl., 26 (1987) 230; H. Brunner, H. Kauermann, J. Pfauntsch, J. Wachter, J.H. Enemark und C.G. Young, J. Organomet. Chem., 331 (1987) 45.
- 14 J. Weiss, Z. Anorg. Allg. Chem., 532 (1986) 184.
- 15 G.J. Kubas, H.J. Wasserman und R.R. Ryan, Organometallics, 4 (1985) 419.
- 16 G.J. Kubas, persönliche Mitteilung.
- 17 R.W. Horn, E. Weissberger und J.P. Collman, Inorg. Chem., 9 (1970) 2367.
- 18 J. Pfauntsch, Dissertation Universität Regensburg, 1988.
- 19 I.B. Benson, S.A.R. Knox, P.J. Naish und A.J. Welch, J. Chem. Soc., Dalton Trans., (1981) 2235; N.G. Connelly, G.A. Johnson, B.A. Kelly und P. Woodward, J. Chem. Soc., Chem. Commun., (1977) 436; S.D. Killops und S.A.R. Knox, J. Chem. Soc., Dalton Trans., (1978) 1260.
- 20 L.E. Bogan Jr., T.B. Rauchfuss und A.L. Rheingold, Inorg. Chem., 24 (1985) 3720.

- 21 M. Draganjac und T.B. Rauchfuss, Angew. Chem., 97 (1985) 745; Angew. Chem. Int. Ed. Engl., 24 (1985) 742; H. Brunner, N. Janietz, W. Meier, B. Nuber, J. Wachter und M.L. Ziegler, Angew. Chem., 100 (1988) 717; Angew. Chem. Int. Ed. Engl. 27 (1988) 708; H. Brunner, N. Janietz, W. Meier, J. Wachter, E. Herdtweck, W.A. Hermann, O. Serhadli und M.L. Ziegler, J. Organomet. Chem., 347 (1988) 237.
- 22 H.H. Sisler und L.F. Audrieth, Inorg. Synth. II, (1946) 173.
- 23 J.A. Gladysz, V.K. Wong und B.S. Jick, J. Chem. Soc., Chem. Commun., (1978) 838.